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Abstract—Synthetic studies of analogues of cytidine monophosphate (CMP)–sialic acid as transition state mimics for sialylation are
reported, applying selective monohydrolysis of a symmetric diester and a subsequent buffer-mediated regio- and stereospecific rear-
rangement we reported earlier.
� 2007 Elsevier Ltd. All rights reserved.
Although monohydrolysis of symmetric diesters yielding
half-esters is a versatile synthetic methodology, most
enzyme reactions that enable this monohydrolysis
induce simple chemoselective conversion of functional
groups, and further skeletal conversions by the
conditions of enzyme reactions are rare. However,
earlier, we reported a regio- and stereospecific
rearrangement initiated by enzymatic monohydrolysis
of symmetric diesters, 1, producing 1-alkoxycarbonyl-
6-formylbicyclo[3.1.0]hex-2-ene-2-carboxylic acids, 2
(Scheme 1).1 Later, we also reported that this rearrange-
ment can occur in a racemic manner, mediated
by a slightly basic buffer solution without an
enzyme.1b
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These rearranged products, 2, possess the same skeleton
as the rearranged product, 4, initiated by peracid
oxidation of norbornadiene, 3, which was reported by
Meinwald et al. (Scheme 1).2 However, although the
Meinwald rearrangement occurs catalyzed by a catalytic
amount of an acid, our rearrangement takes place under
the mildly basic reaction media due to the existence of
the electron-withdrawing carboalkoxy groups. The
product yielded by the Meinwald rearrangement, 4,
has been successfully applied to synthesis of a variety
of biologically significant compounds.3

Sialic acids are monosaccharides distributed especially
in glycoproteins and glycolipids, with the most
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predominant one being N-acetylneuraminic acid
(Neu5Ac). Sialyltranferases catalyze the transfer of sialic
acid from cytidine monophosphate N-acetylneuraminic
acid (CMP-Neu5Ac) to a growing oligosaccharide.
These processes are involved in various biological
functions, thus influencing a variety of physiologically
important processes, such as viral infection and inflam-
mation.4 Therefore, inhibitors of sialyltransferase are
anticipated to serve as useful probes for dissecting the
mechanisms of these biological processes (Scheme 2).
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Scheme 2. Mechanism of sialylation.
At this point, potent inhibitors of sialyltransferases are
still relatively limited;5 therefore there has been
considerable interest in synthesizing various types of
the inhibitors. Some examples of the common strategies
are based on the electronic charge distribution, planarity
having an oxocarbenium ion character, or the distance
of the leaving CMP group in the proposed transition
state. Inhibitors possessing the bicyclo[3.1.0]hex-2-ene
structure have been reported to be effective by
Horenstein et al., with the estimated Ki values 10–
20 lM for 2,3- and 2,6-sialyltransferases.5a The struc-
ture mimics the oxocarbenium ion-like plane and the
position of an aglycon above the plane, with the distance
between the aglycon-mimic and the plane resembling a
late transition state of sialylation. The synthesis of these
CMP derivatives started with the Meinwald rearrange-
ment product, 4.5a Our rearrangement products, 2, are
thus also anticipated to serve as a useful synthetic build-
ing block, either in an optically active or racemic form.

Herein we report a concise synthesis of a small library of
CMP derivatives, applying the novel regio- and
stereospecific rearrangement initiated by desymmetriza-
tion of a symmetric diester we reported earlier (Scheme
1).1 These derivatives also possess the bicyclo[3.1.0]hex-
2-ene skeleton; however, since this core skeleton
possesses several functional groups that can be modified
independently, this template allows synthesis of diverse
derivatives. These derivatives are also likely to show
activities as inhibitors of sialyltransferase.

Therefore, we applied our rearrangement to the synthe-
sis of a small library of CMP derivatives. We started
with the rearranged product in a racemic form in this
study, as it allows large scale production at a low cost.
The detailed synthetic sequence is shown in Scheme 3.

The symmetric diester, 5,6 was selectively
monohydrolyzed to produce the corresponding half-ester,
6, in a quantitative yield.7 The half-ester was subjected
to the epoxidation and subsequently to the rearrange-
ment we reported earlier,1 yielding 1-methoxycarbonyl-
6-formylbicyclo[3.1.0]hex-2-ene-2-carboxylic acid, 8, in
a stereo- and regiospecific manner. After the diazome-
thane treatment, the formyl group of this rearranged
product was reduced with NaBH4 to form alcohol, 9.
This alcohol was used as a template for synthesis of
various derivatives of the transition state mimics for
sialyltransferase-catalyzed reactions after coupling with
the CMP moiety.

For the CMP moiety, 2-cyanoethyl 2 0,3 0-O,N4-
triacetylcytidin-50-yl N,N-diisopropylphosphoramidite,
10, was first prepared according to the reported proce-
dure.8 Alcohol 9 was coupled with this phosphor-
amidite, 10, in the presence of tetrazole. This coupling
reaction, which is a key step in the entire synthetic
scheme, took place smoothly. The product was oxidized
with the use of tert-butyl hydroperoxide followed by the
addition of triethylamine for the removal of the cyano-
ethyl group. These series of reactions led to the triethyl
ammonium salt of diastereometric mixture, 11a/b, in a
reasonable yield after three steps (85%). Our attempts
to separate these diastereomers were unsuccessful, and
therefore, we decided to use these diastereomeric mix-
tures for further studies, as in the studies of Horenstein
et al.5a Deacetylation of 11a/b was achieved using so-
dium methoxide in methanol to yield 12a/b in a high
yield. Although there are two carbomethoxy groups that
may be susceptible to hydrolysis by treatment with
aqueous NaOH, the carbomethoxy group attached to
the quaternary carbon clearly showed more resistance
toward this hydrolysis, as has been expected from
general tendencies due to the steric hindrance.9 When
the reaction time was 4 hours, it produced only mono-
ester 13a/b. The formation of 13a/b was also supported
by the HMBC spectrum, showing correlation between the
enoic proton at around 6 ppm and the carbonyl carbon
of the COO� group at 167.5 ppm attached to the cyclo-
pentene ring, but not showing such correlation with the
carbonyl carbon of the COOMe group at 166.2 ppm.
In this way, the two ester groups were successfully
distinguished, potentially allowing synthesis of more
diverse derivatives in the future. The remaining carbo-
methoxy group was hydrolyzed by the extended reac-
tion time (36 hours). The trisodium salt was obtained
in a moderate yield after the purification by column
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Scheme 3. Synthetic scheme for CMP–sialic acid analogues.
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chromatography, or preparative HPLC, and subsequent
ion exchange with Na+.

In summary, we synthesized several transition state
mimics of sialyltransferase-catalyzed reactions, applying
our regio- and stereospecific rearrangement initiated by
monohydrolysis of a symmetric diester. This study is the
first synthetic application of this novel rearrangement.
The phosphates, 12a/b, 13a/b, and 14a/b, are anticipated
to serve as a useful tool to study the action of
sialyltransferase.10 In particular, phosphates 13a/b and
14a/b are anticipated to be more cell-permeable and
expected to possess inhibitory activities of sialyltrans-
ferase. We will evaluate the inhibitory activities of these
derivatives and will synthesize more derivatives based on
the results. Further studies will be reported in due
course.
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